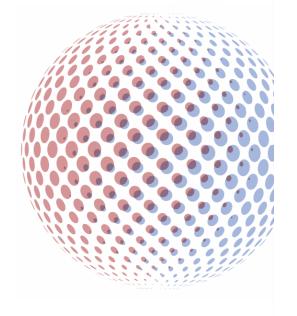


Digital and Green Transitions: Opportunities and Challenges for Europe and China


Roberta Rabellotti Università di Pavia

In collaboration with Davide Bonaglia, Rasmus Lema & María de las Mercedes Menéndez

University of Brunei – November 2024

Digital Power China

A European research consortium

REVERSE DEPENDENCY:

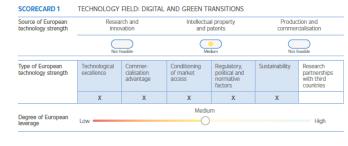
MAKING EUROPE'S DIGITAL TECHNOLOGICAL STRENGTHS INDISPENSABLE TO CHINA

MAY 2024		EDITOR: TIM RÜHLIG	
----------	--	--------------------	--

Table of Contents

Ab	out the Digital Power China research consortium	6
Exe	ecutive Summary	8
1.	Introduction: Reverse Dependencies on China Jan-Peter Kleinhans, Tim Rühlig	14
2.	Lithography: Is the EU's Semiconductor Manufacturing Equipment a Strategic Chokepoint? Jan-Peter Kleinhans, John Lee	30
3.	5G/6G: Energy Performance of Future Wireless Networks Liesbet van der Perre, Tim Rühlig, Julian Heiss	44
4.	Quantum technology: Quantum Sensing Applications in Healthcare Michael Settelen, Araceli Venegas-Gomez, Abhishek Purohit, Simon Armstrong	59
5.	Blockchain: Dependencies in Blockchain and Smart Contracts Cyrille Artho, Rogier Creemers	76
6.	Critical Raw Materials: What Chinese Dependencies, what European Strengths? John Seaman, Florian Vidal, Raphaël Danino-Perraud	88
7.	Artificial Intelligence: Al for Medical Imaging: MRI Scanners and the Roles of Philips and Siemens in China Carlo Fischione, Sanne van der Lugt, Frans-Paul van der Putten	102
8.	Chips: Automotive Chips: a European Chokepoint? John Lee, Jan-Peter Kleinhans	112
9.	Space exploration: Space Exploration 2040: Regaining European Technological Leadership? Marco Aliberti, Angela Stanzel, Lars Pezold	126
10.	Facial recognition: The Role of European Providers in China's Facial Recognition Apparatus Greg Walton, Valentin Weber	139
11.	Genomic data: Regaining and Maintaining the Advantage in Biotechnologies Una Bērziņa-Čerenkova, Elena Ferrari Karina Palkova, Julia Voo	155
12	Technical standardisation: European Tech Standardisation Power: Durable Indispensability of Another Kind? Martin Catarata, Tim Rühlig	166
13	Twin transition: Digital and Green Transitions: Opportunities and Challenges for Europe and China Davide Bonaglia, Rasmus Lema, María de las Mercedes Menéndez, Roberta Rabellotti	184
Pre	evious DPC reports	208
Im	print	211

Agenda


- 1. The twin transition technologies
- 2. Who leads the global technological race in TTT
- 3. Focus on Al
- 4. Cooperation or decoupling
- 5. What about the Global South

Digital and Green Transitions: Opportunities and Challenges for Europe and China

Davide Bonaglia, Rasmus Lema, María de las Mercedes Menéndez and Roberta Rabellotti

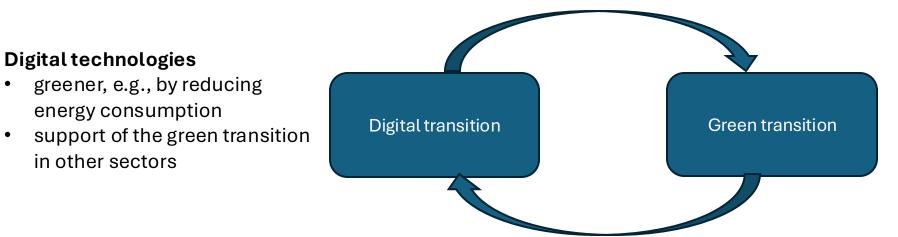
The digital and green transitions are crucial to the competitiveness of Europe and China. To strengthen their innovation efforts in this direction, it is essential to develop a technology ecosystem that promotes transdisciplinary research and combines digital and green knowledge. This chapter explores how the knowledge base in 'twin' digital and green technologies is developing in the European Union, the United Kingdom and China in comparison with other major players on the global technology scene such as the United States, Japan and South Korea. It investigates the Chinese policy programmes adopted to strengthen the knowledge base in this key area and analyses green digital patents. We conclude that Europe has an advantage over China in most of the twin transition technological areas investigated, but Europe has a few leading edges in the wider global landscape. The chapter emphasises the need for both competition and collaboration between the EU and China in driving the global sustainability goals with these technologies, which calls for ambitious public policies and collaborative efforts to address the challenges in greening digital technologies.

DIGITAL AND GREEN TRANSITIONS - DPC 2024

INTRODUCTION

isation and sustainability.

The urgent need to better understand the interactions between the digital and green transitions is clearly rec-The combined digital and green transition will enhance ognised in the European Commission's 2022 Strategic resilience and sustainability, and create business op- Foresight Report.¹ The report states that digital techportunities. Each has the potential to make countries nologies can provide functions that catalyse the green more environmentally responsible, while at the same transition, such as monitoring and tracking to propel the time opening up new business opportunities for compa- circular economy. In the United Kingdom, the British govnies. Both transformations are widely considered crucial ernment has launched a Knowledge Asset Grant Fund for the future competitiveness of national economies. that prioritises projects aimed at achieving sustainabil-Nonetheless, there is still relatively little overlap in the ity in the digital economy.² China's 14th Five-Year Plan global policy arena in relation to environmental digital- for Energy Technology Innovation highlights high-quality green development and emphasises that innovation is

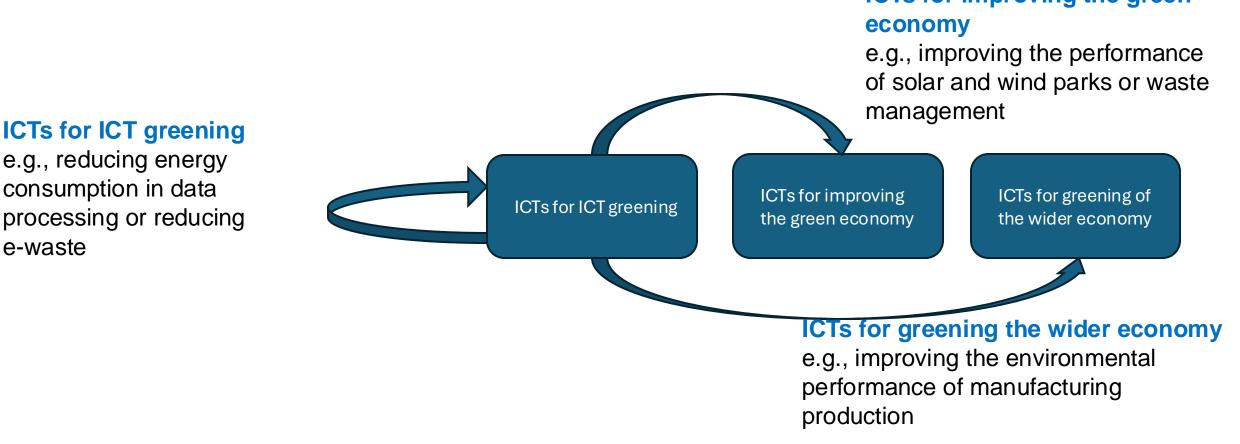

1 European Commission. "2022 Strategic Foresight Report: Twinning the Green and digital transitions in the new geopolitical co." text*, 29 June 2022, accessed 15 April 2024, at https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX-52022DC0289. 2 See https://gott.blog.gov.uk/2023/06/16/highlighting-digital-and-green-projects-in-gotts-autumn-knowledge-asset-grant-fund-

Bonaglia, D., Lema, R., Menéndez de Medina, M., & Rabellotti, R. (2024). Digital and Green Transitions: Opportunities and Challenges for Europe and China. In T. Rühlig (Ed.), Reverse Dependency: Making Europe's Digital -Technological Strengths Indispensable to China (pp. 184-207). Digital Power China.

DPC

The twin transition

- The Twin Transition describes the simultaneous shift toward a sustainable, low-carbon economy (green transition) and the digitalization of industries and services (digital transition).
- It emphasizes how digital innovation can support environmental sustainability, improving resource efficiency, reducing emissions, and fostering economic growth.


Green technologies

- support the digital economy (e.g., green electricity for data centers)
- Green priorities and institutional arrangements shape the direction of digital innovation

What are the twin transition technologies (TTTs)?

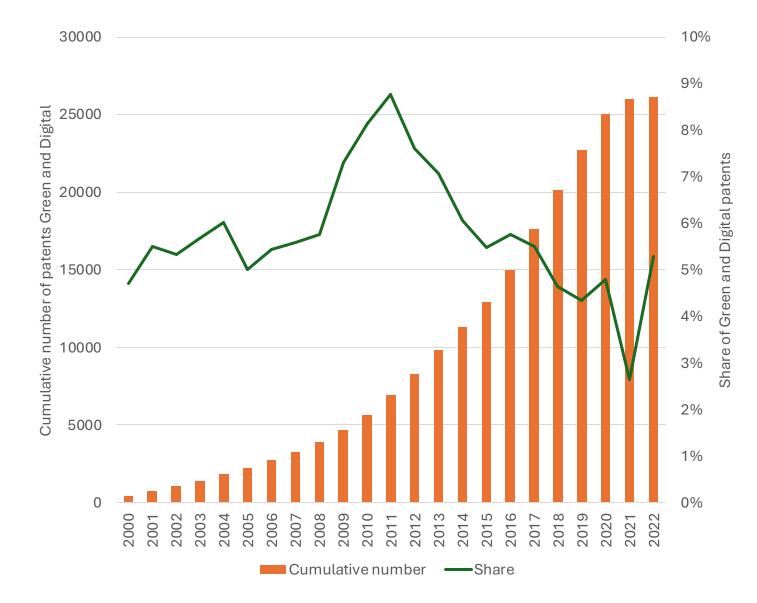
- Twin transition technologies (TTTs) emerge when digital technologies meet sustainability objectives.
- We propose a classification of digital innovations developed (or applied) for direct or indirect environmental gains. ICTs for improving the green

e-waste

Methodology

Database: 66.648 patent applications filed at USPTO, EPO and JPO from 2000 to 2022

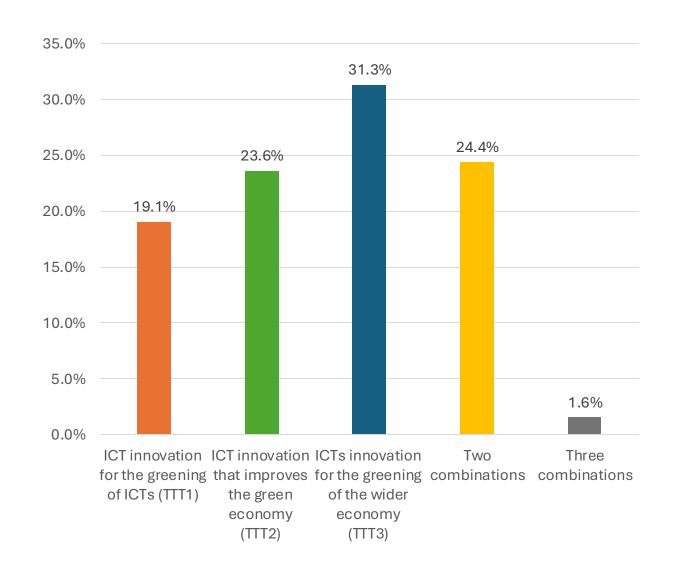
Green technologies: Y02/Y04S technological codes for climate change mitigation technologies

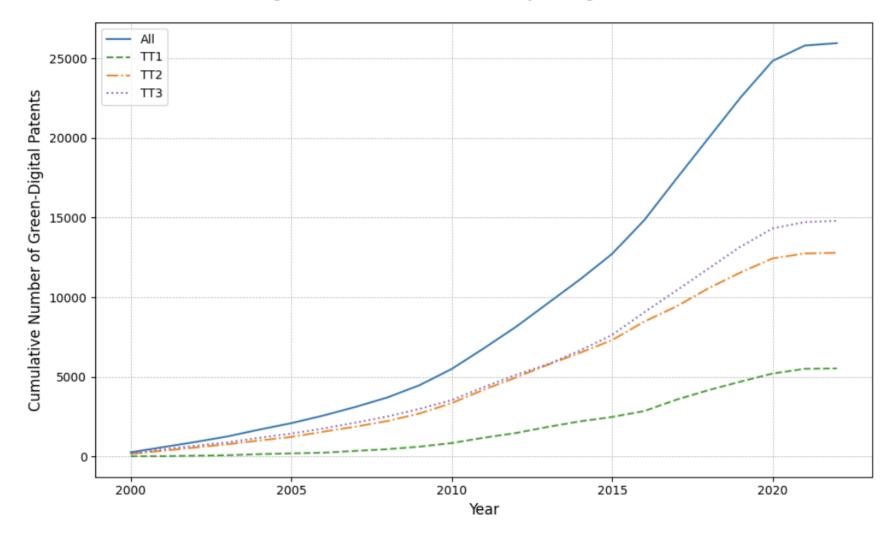

Digital technologies: based on WIPO identification of General Purpose Technologies (GPTs) including artificial intelligence (AI), machine learning (ML), autonomous systems, big data, cloud computing, internet-of-things (IoT) and robotics.

Green technologies and TTT classes

TABLE 1: Climate change mitigation technologies and smart grids

CPC	DESCRIPTION	KEYWORDS			
Y02	Technologies or Applications for Mitigation or adaptation against climate change		ICTs for ICT greening (TTT1)	•	Green-ICT (Y02D)
Y02A	Technologies for adaptation to climate change	Adaptation			
Y02B	Climate change mitigation technologies related to buildings	Buildings	ICTs for improving the green economy (TTT2)	•	Adaptation (Y02A) Greenhouse gas capture
Y02C	Capture, storage, sequestration, or disposal of greenhouse gasses	Greenhouse gas capture and storage		•	and storage (Y02C) Energy (Y02E)
Y02D	Climate change mitigation technologies in information and communication technologies	Green-ICT		•	Waste (Y02W)
Y02E	Reduction of greenhouse gas emissions related to energy generation, transmission, or distribution	Energy		•	Smart grids (Y04S)
Y02P	Climate change mitigation technologies in the production or processing of goods	Production			
Y02T	Climate change mitigation technologies related to transportation	Transports	ICTs for greening the wider economy	•	Buildings (Y02B)
Y02W	Climate change mitigation technologies related to wastewater treatment or waste management	Waste	(TTT3)	•	Production (Y02P) Transports (Y02T)
Y04	Information or communication technologies with an impact on other technology areas				
Y04S	Systems integrating technologies related to power network operation, communication, or information technologies for improving electrical power generation, transmission, distribution, management or usage, i.e. smart grids	Smart Grids			


Figure 1. Green Digital cumulative evolution and share


Green digital patents are less than 10% of total digital patents

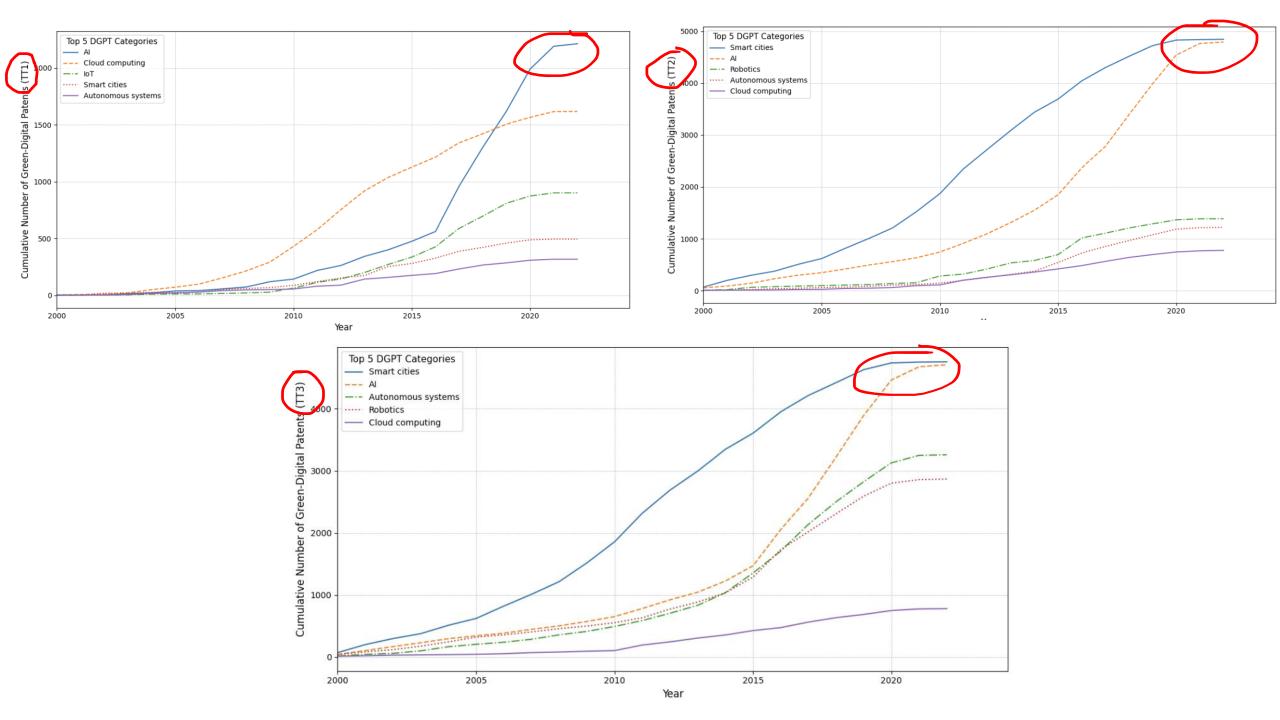

- Building, Production and Transport (TT3) are the most relevant class in green-digital technologies;
- Most of the combinations include TT2 and TT3;

Figure 3. Digital green technologies by TTT categories

Figure 2. Evolution of TTT by categories

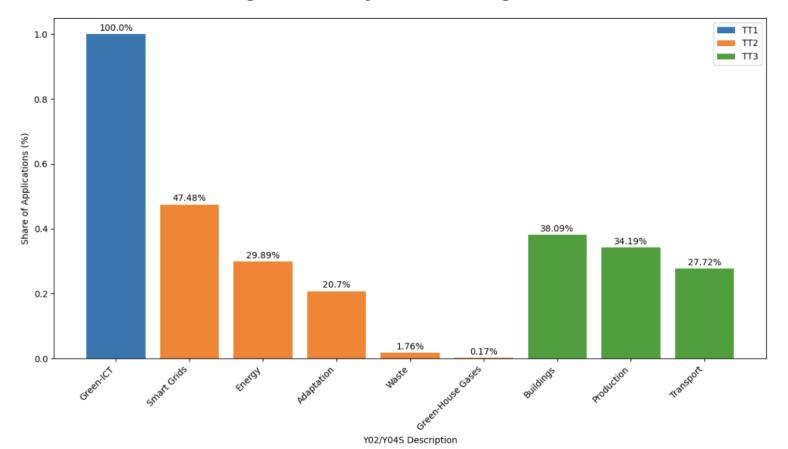
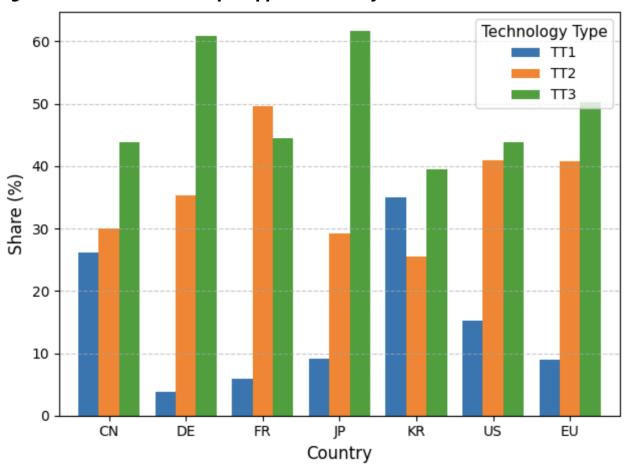
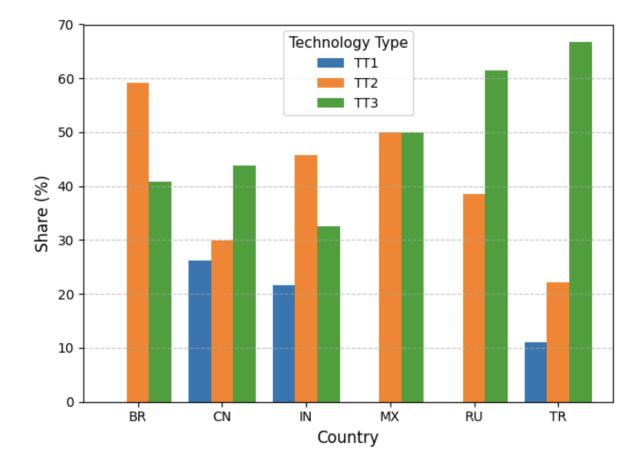


Figure 4. TTT by Y02/Y04 categories

Digital green patent applications by countries, 2000-2022


Country	Number of patents	Share	Cumulative share
United States	14701	57,37%	57,37%
Japan	2470	9,64%	67,01%
China	1842	7,19%	74,20%
Korea	1456	5,68%	79,88%
Germany	886	3,46%	83,33%
Canada	539	2,10%	85,44%
Taiwan	506	1,98%	87,41%
Great Britain	392	1,53%	88,94%
France	339	1,32%	90,27%
Switzerland	328	1,28%	91,55%
Israel	323	1,26%	92,81%
Sweden	234	0,91%	93,72%
Netherlands	160	0,63%	94,35%
Denmark	145	0,57%	94,91%
India	143	0,56%	95,47%
Rest of the world	1161	4,53%	100,00%
Sum	25625		


What about the global South?

Income group	Π1	ТТ2	ТТЗ	Total
High income	15,6%	38,7%	45,8%	92,5%
Upper middle income	25,4%	30,7%	43,8%	7,1%
Lower middle income	19,5%	47,7%	32,9%	0,4%

Upper middle Income

country	number	share
China	2670	97,1%
Brazil	44	1,6%
Türkiye	9	0,3%
Mexico	8	0,3%
Argentina	4	0,1%
Malaysia	3	0,1%
Colombia	2	0,1%
Costa Rica	2	0,1%
Iran, Islamic	2	0,1%
Rep.		
Thailand	2	0,1%
Ukraine	2	0,1%
South Africa	2	0,1%
Gabon	1	0,0%

Figure 4. Distribution of TTT per applicant country

RTA (Revealed Technology Advantage): Relative technological specialization

TABLE	Green Technologies			
Y02A	Adaptation	UK, USA		
Y02B	Buildings	UK, EU		
Y02C	GHG capture and storage	UK, EU, USA		
Y02D	Green-ICT	China, USA		
Y02E	Energy	China, EU, Japan		
Y02P	Production	Japan		
Y02T	Transport	China, UK, EU, Japan		
Y02W	Waste	China, EU		
Y04S	Smart Grids	UK, USA		

TABLE 3: Positive RTAs:

5
ı
>

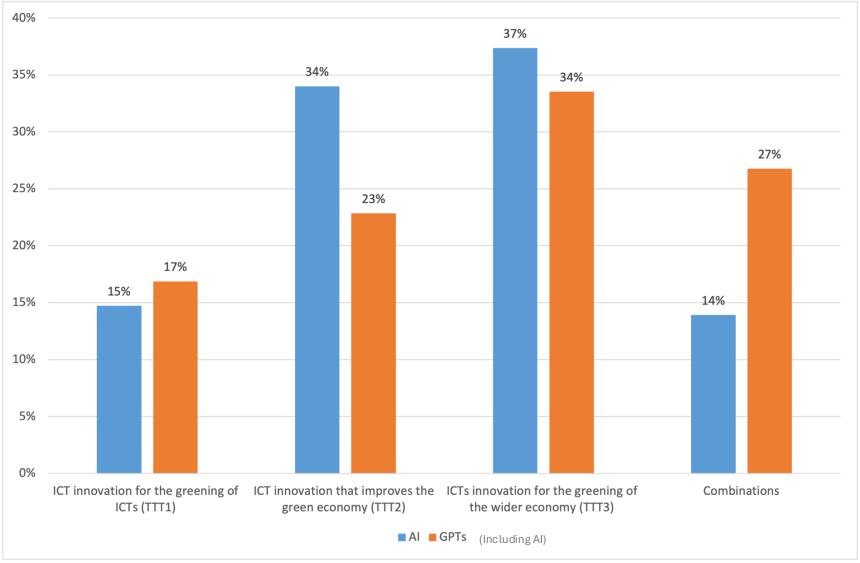
RTA (Revealed Technology Advantage) index provides an indication of the relative specialization of a given country in selected technological domains, based on patent applications

Patent quality: forward citations

- Forward citations occur when a patent refers to another one, signaling that the original patent has been influential in the development of subsequent technologies.
 - The higher the number of forward citations, the more valuable the patent.
 - Share of most-cited patents is the number of most-cited patents for each country in each technology divided by the total number of most-cited patents in that technology.
- US patents are more cited in every technology.
- EU patents are more influential than Chinese ones.

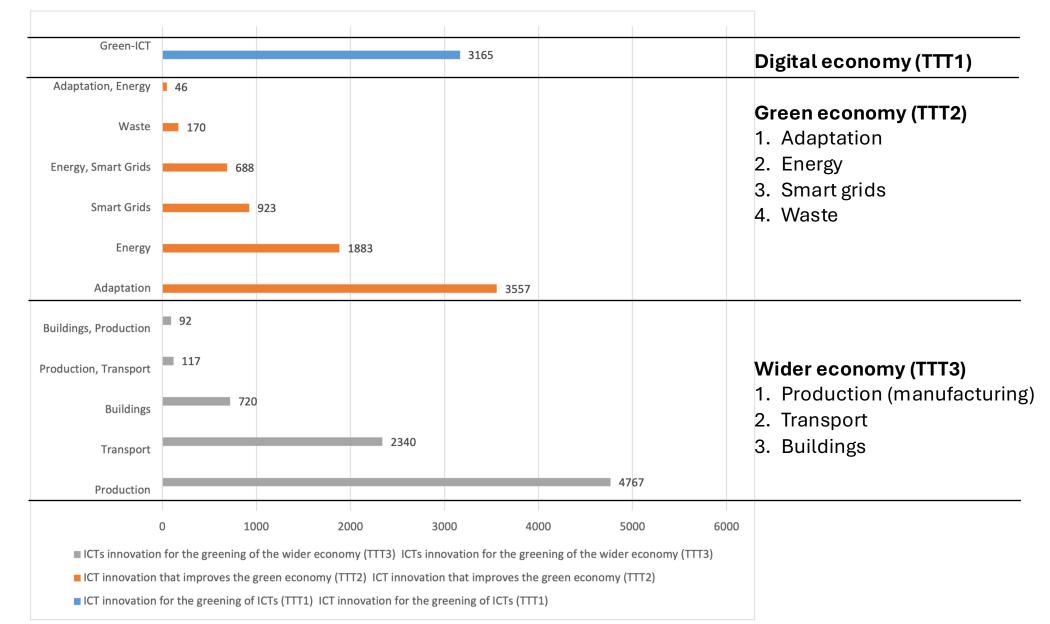
TABLE 5: Top 10% most cited digital green patents by GPTs, 2011–2020

GPTS	COUNTRY	# OF PATENTS	# OF MOST-CITED PATENTS	SHARE OF MOST-CITED PATENTS (%)
	China	676	21	3.51
AublCalat	EU	1076	100	16.72
Artificial Intelligence	UK	185	4	0.67
	Japan	1234	58	9.70
	USA	5285	415	69.40
	China	478	31	10.76
A	EU	967	64	22.22
Autonomous Systems	UK	138	2	0.69
	Japan	954	8	2.78
	USA	3001	183	63.54
	China	68	1	1.49
Big Data	EU	196	9	13.43
	USA	731	57	85.07
	China	209	4	1.16
Cloud Computing	EU	329	58	16.81
	Japan	270	12	3.48
	USA	2639	271	78.55
	China	211	6	1.97
	EU	223	36	11.80
Internet of Things	UK	96	2	0.66
	Japan	371	48	15.74
	USA	1814	213	69.84
	China	242	11	2.61
	EU	720	63	14.93
Robotics	UK	159	3	0.71
	Japan	920	45	10.66
	USA	2205	300	71.09


Artificial Intelligence and Climate Change

- The relationship between artificial intelligence and climate change is both positive and negative:
 - AI has potential intrinsic adverse effects: increased carbon emissions from computing and data centers.
 - These effects may, however, be offset by the application of AI to various climate mitigation and adaptation domains.
- But the positive effects are not automatic, nor are existing solutions necessarily the most relevant ones especially in the Global South.
- Hence the need for **policy** and governance frameworks.

AI-Driven TTTs


Type of TTT	Domains	Examples
Al for ICT greening (TTT1)	 Computing Communication networks ICT equipment 	 Optimize cooling and energy use in data centers Dynamic allocation of computational resources
Al for improving the green economy (TTT2)	 Adaptation Carbon capture and storage Energy Smart grids Waste 	 Predicting climate change impacts Monitoring and preventive maintenance of renewables Predicting and managing energy demand, reducing peak load on the grid
Al for greening the wider economy (TTT3)	 Buildings Production Transport 	 Optimizing heating, cooling, and lighting, reducing energy consumption Improving manufacturing processes to use fewer resources and produce less waste Optimizing routes and maintenance for transport fleets, enhancing fuel efficiency

Main AI application domains

 Compared to other digital technologies, AI has a more pronounced focus on solutions for the green economy (TTT2).

AI-TTT with Y02/Y04 tag by GPTs category (# applications)

Distribution of climate-focused artificial intelligence patents across country groups

Country	#	% of total
	patents	
United States	30882	46,34%
Japan	11825	17,74%
EU	10194	15,3%
Germany	4543	6,82%
France	1632	2,45%
Netherlands	843	1,25%
Italy	705	1,06%
Sweden	680	1,02%
UK	1841	2,76%
Korea	3718	5,58%
China	3323	4,99%
Rest of	4865	7,30%
countries		
Total	66.648	100%

High Income	94,1%	
Upper middle income	5,4%	
Lower middle income	0,5%	-
Low Income	0,0%	

91% Chinese patents

•	Country	# patents	% of total
	China	3323	91,5%
	Brazil	87	2,4%
	Turkey	61	1,7%
	Mexico	61	1,7%
	Russia	54	1,5%
	Rest of countries	46	1,3%
	Total	66.648	100%

Summary of the key findings

- Globally, the twin transition is still at a very early stage but growing. There is still a relatively weak connection between ICTs and green technologies.
- USA is the world leader in TTTs, largely reflecting the overall superiority in digital technology innovation, followed by Japan and EU, although with a significant gap.
- China remains a relative latecomer in the TTT field.
- The analysis of the quality of patents shows that China has less impactful digital green patents compared to USA, EU, and Japan.

Cooperation or decoupling?

- In the field of the twin transition technologies there is a delicate balance between cooperation on common challenges and competition to safeguard economic interests and values.
- Decoupling in digital green technologies, for example by means of export controls, seems both unrealistic and counterproductive because these are technologies aimed at tackling climate change and biodiversity loss with a clear global interest.
- Instead of decoupling, China and the EU (as well as the rest of the world) should increase public R&D investments and provide incentives to private investors to strengthen the existing areas of technological leadership, at the same time deepening cooperation with relevant partners.
- Especially in non-competitive fields, such as green digital technologies, competition needs to be combined with collaboration.
- It is essential to maintain a long-term perspective, which might offer a different set of opportunities in a rapidly changing global environment: cooperation at the technical level and exchanges in concrete domains should always remain possible.

Implications for the Global South

- **Context specific solutions**: The danger is that TTTs are mainly/only shaped by lead-market conditions and do not account for the specific circumstances of low and middle-income countries, such as less efficient electricity grids or more labourintensive production techniques. Need for context-specific solutions.
- Support solutions in and for the Global South: In global public policy more attention needs to be given to the environmental potential of digital technologies as a global public good. Incentives and support for firms to address problems/conditions that are specific to the countries and domains where the mitigation potentials and adaption needs are greatest.
- **Differentiated strategies:** Some emerging economies combine ICT capabilities and enormous environmental leapfrogging potential (China, India, Brazil, South Africa...) while other countries are characterized by more adaptation need and more limited local capacity.

REVERSE DEPENDENCY: MAKING EUROPE'S DIGITAL TECHNOLOGICAL STRENGTHS INDISPENSABLE TO CHINA

robertarabellotti.it